
Austin Peay State University, Tennessee Fall 2024
CSCI 5060: Graduate Server-side Web Development
Dr. Leong Lee

欲

CSCI 5060 Assignment 1

Total estimated time for this assignment: 9 hours (if you are a good programmer)

The main programming language for this assignment should be PHP (mixed with HTML and CSS). If you do
not use PHP, you will get 0 points.

When you see “Richard Ricardo” in the example screen captures, change it to <your name>.
When you see “Richard” in the example screen captures, change it to <your first name>.
If you do not put <your name> / <your first name> in the above mentioned fields, you will get 0 points for
the question(s).

No two students should submit webpages with exactly the same code, content, layout, or color combination. If
found, both students will get 0 points.

Please change the provided example’s layout and color combination (color scheme). If you use (copy) ANY of
the provide example’s color combination, 10 points will be deducted (-10 points).

Create a folder on your hard disk, name the folder lastname_firstname_assignment1. Save all the files from
this assignment in this folder.

Create the following subfolders (in the folder lastname_firstname_assignment1): q1, q2, q3.
As a result, you should have the following folder (directory) structure for this assignment:

• lastname_firstname_assignment1\q1\
• lastname_firstname_assignment1\q2\
• lastname_firstname_assignment1\q3\

Use XAMPP web server solution stack package to help debugging PHP code. It will make your debugging
process easier. All php files must not produce any error, or any warning (-2 points for each error, each
warning). Your program must run. A program that does not run will get at most 50% of the possible points.
All files must begin with a comment that identifies the author, the course code, and the program date (- 2
points each question if found missing). All html, css and php files must be clearly documented (commented).
Points will be taken off (-2 points each question) for insufficient comments (<!-- -->, /* */, //).

• When you view page source in a web browser, <!DOCTYPE html> must be at the top of every page. In

other words, all pages must be written in HTML5. (-20 points if not)
o You can put php code before <!DOCTYPE html>.
o You cannot put html code before <!DOCTYPE html>.

• Before adding PHP code, all html files must pass html validation at http://validator.w3.org/ without any
error (and with only 1 warning).

• After adding PHP code, the generated html code (Firefox web browser > right-click > view page source)
must also pass html validation at http://validator.w3.org/ without any error (and with only 1 warning).

• All css files must pass css validation at http://jigsaw.w3.org/css-validator/ without any error. (-2 points
for each error/warning, only 1 warning is allowed for html validator)

2 CSCI 5060

Question 1 – PHP Chapter 2 (33 points) Estimated time: 3 hours

• Save the files in subfolder “lastname_firstname_assignment1\q1\”. (1 point)
• The initial page should look like the one shown below. (3 points)
• Allow the user to enter the information to the five textboxes. (5 points)
• Create your pages using “<your name>’s Calculation Page” as the page titles (<title> tag). (2 points)
• Save the first page as index.htm (2 points). Use a HTML form to capture user input. Submit the form to a

second file index_process.php using the GET Method. (5 points)
• The second page index_process.php will then be updated as shown. It contains a link to go back to the

first page. (10 points)
• Create a css file named style.css to format all pages by creating your own layout (no two students should

have the same layout). You can use the same (or similar) css file(s) to format all questions. (5 points)

Example: Test case 1 input

3 CSCI 5060

Example: Test case 1 output

Example: Test case 2 input

4 CSCI 5060

Example: Test case 2 output

5 CSCI 5060

Question 2 – PHP Chapter 2 & 8 (33 points) Estimated time: 3 hours

• Save the files in subfolder “lastname_firstname_assignment1\q2\”. (1 point)
• The initial page should look like the one shown below. (4 points)
• The use should enter a number. (2 points)
• The output should base on the logic shown on example below: (12 points for logic)
• Create your pages using “<your name>’s Number Check” as the page titles (<title> tag). (4 points)
• Save the first page as index.htm. Use an HTML form to capture user input. Submit the form to a second

file index_process.php using the POST method. (5 points)
• The second page index_process.php will then be updated as shown. It contains a link to go back to the

first page. (5 points)
• Create a css file named style.css to format all pages by creating your own layout (no two students should

have the same layout). You can use the same (or similar) css file(s) to format all questions. (5 points)

Example: Test case 1 input

Example: Test case 1 output

6 CSCI 5060

Example: Test case 2 input

Example: Test case 2 output

Example: Test case 3 input

7 CSCI 5060

Example: Test case 3 output

8 CSCI 5060

Question 3 – PHP Chapter 2 & 8 (34 points) Estimated time: 3 hours

• Save the files in subfolder “lastname_firstname_assignment1\q3\”. (1 point)
• Create a web page that displays the default information (example shown).
• The initial page and related outputs should look like the examples shown below. It contains a link to go

back to the first page. (4 points)
• Create your pages using “<your name>’s Days of the Week” as the page titles (<title> tag). (4 points)
• Allow the user to enter a number (2 points).
• The output logic is shown in the examples below: (12 points for logic)
• Save the first page as index.htm. Use a HTML form to capture user input. Submit the form to a second

file index_process.php using the POST method. (5 points)
• The second page index_process.php will then be updated as shown. It contains a link to go back to the

first page. (5 points)
• Create a css file named style.css to format all pages by creating your own layout (no two students should

have the same layout). You can use the same (or similar) css file(s) to format all questions. (5 points)

Example: Test case 1 input

9 CSCI 5060

Example: Test case 1 output

Example: Test case 2 input

10 CSCI 5060

Example: Test case 2 output

Important:

1. If you do not put <your name> / <your first name> in the above mentioned fields (as shown in the
examples), you will get 0 points for the question(s).

2. No two students should submit webpages with exactly the same code, content, layout, or color
combination. If found, both students will get 0 points.

3. When you view page source in a web browser, <!DOCTYPE html> must be at the top of every page. In
other words, all pages must be written in HTML5. (-20 points if not)

• You can put php code before <!DOCTYPE html>.
• You cannot put html code before <!DOCTYPE html>.

4. Before adding PHP code, all html files must pass html validation at http://validator.w3.org/ without any
error (and with only 1 warning).

5. After adding PHP code, the generated html code (Firefox web browser > right-click > view page source)
must also pass html validation at http://validator.w3.org/ without any error (and with only 1 warning).

6. All css files must pass css validation at http://jigsaw.w3.org/css-validator/ without any error/warning.
7. If your files do not pass the html and css validations, 2 points will be deducted for each html or css

error/warning found (1 warning allowed for html validator).
8. Document (comment) your HTML files (<!-- -->), CSS files (/* */), and PHP files (/* */ OR

//). Points will be taken off for insufficient comments (<!-- -->, /* */, //).

Submission instructions:
• You need to test all document(s).
• Do screen capture(s) of the input and the related output(s). Use any graphic editing software (e.g.

Microsoft Paint, Adobe Photoshop, or GIMP etc.) to cut out the browser output (from the screen capture),
paste them into a word document.

11 CSCI 5060

• Provide 2 different test cases for each question. In other words, for each question, you may need to have
2 input screen captures and 2 related output screen captures.

• Do screen capture(s) of html validation results (index.htm files only) and css validation results (style.css
file only), cut and paste them into the word document. If you use the same style.css file, you only need to
do screen capture of one style.css file.

• Save the word document as a pdf file.

You need to submit the following:
1. A pdf file containing the screen capture(s) of the web browser input and output pages, and the screen
capture(s) of all html validation results (from http://validator.w3.org/) and css validation results (from
http://jigsaw.w3.org/css-validator/), name the file lastname_firstname_assignment1.pdf.
2. All html file(s), php file(s), css file(s), and other related files (e.g. image files). Zip your file folder
(lastname_firstname_assignment1) into a single zip file (or rar file) lastname_firstname_assignment1.zip.
In the above example, the zip file should contain the following files and subfolders. If there is any image, there
should be a \images\ subfolder.

• lastname_firstname_assignment1\q1\index.htm
• lastname_firstname_assignment1\q1\index_process.php
• lastname_firstname_assignment1\q1\style.css // you may put style.css in a subfolder
• lastname_firstname_assignment1\q2\index.htm
• lastname_firstname_assignment1\q2\index_process.php
• lastname_firstname_assignment1\q2\style.css
• lastname_firstname_assignment1\q3\index.htm
• lastname_firstname_assignment1\q3\index_process.php
• lastname_firstname_assignment1\q3\style.css

Please submit the above mentioned two files (.pdf and .zip) to D2L digital dropbox.

Grading guidelines (programming questions):
Your programs will be judged on several criteria, which are shown below.

• Correctness (50%): Does the program compile (run) correctly? Does the program do what it’s
supposed to do?

• Design (20%): Are operations broken down in a reasonable way (e.g. classes and methods)?
• Style (10%): Is the program indented properly? Do variables have meaningful names?
• Robustness (10%): Does the program handle erroneous or unexpected input gracefully?
• Documentation (10%): Do all program files begin with a comment that identifies the author, the

course code, and the program date? Are all the classes, methods and data fields clearly documented
(commented)? Are unclear parts of code documented (commented)? (Some items mentioned may
not apply to some languages)

A program that does not compile (run) will get at most 50% of the possible points.

